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1. The Ehrenfest theorem and the classical limit (8 points)

In the lecture we have derived the Ehrenfest theorem

d〈~p〉
dt

= −〈∇V (~r)〉 . (1)

This equation is different from the classical equation of motion

d〈~p〉
dt

= −∇V (~r) |~r=〈~r〉 (2)

because, in general, 〈∇V (~r)〉 6= ∇V (~r) |~r=〈~r〉.

We want to consider in the following the validity of the classical approximation (2) and investigate
the size of the quantum corrections. We restrict the discussion to one dimension where Eq. (1)
simplifies to

d〈p〉
dt

= −
〈
∂V

∂x

〉
. (3)

Taylor expand f(x) = −∂V
∂x around x = 〈x〉 to obtain an estimate for the quantum corrections. In

which case does the classical approximation (2) for the expectation value—also restricted to one
dimension—become exact?

2. The particle in a box using matrix methods (20 points)

Consider a free particle moving in the following one-dimension potential

V (x) =

∞, x < 0
0, 0 ≤ x ≤ a
∞, x > a

a) (5 pts) Write the Hamiltonian in matrix form using a discretized position representation. Write
a small computer program to calculate the lowest 5 eigenvalues and eigenstates by solving the
discretized stationary Schroedinger equation. Plot the eigenstates.

b) (8 pts) Write the position operators x̂ and x̂2 in matrix form and use the program to calculate
〈Ψ0(x)|x̂|Ψ0(x)〉, 〈Ψ0(x)|x̂2|Ψ0(x)〉, as well as the variance ∆x =

√
〈x̂2〉 − 〈x̂〉2 for the lowest

eigenstate (ground state) Ψ0(x). Compare the results with the analytical results obtained by
solving the Schroedinger equation directly.
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c) (7 pts) Write the momentum operators p̂ and p̂2 in matrix form and use the program to
calculate 〈Ψ0(x)|p̂|Ψ0(x)〉, 〈Ψ0(x)|p̂2|Ψ0(x)〉, as well as the variance ∆p =

√
〈p̂2〉 − 〈p̂〉2 for

the lowest eigenstate (ground state) Ψ0(x). Compare the results with the analytical results
obtained by solving the Schroedinger equation directly.

3. A three-dimensional problem (16 points)

Consider a potential V (~r) which can be written as a sum of three functions

V (~r) = V1(x1) + V2(x2) + V3(x3) (4)

of the position vector ~r = (x1, x2, x3).

a) (6 pts) Show that the three-dimensional stationary Schrödinger equation[
− ~2

2m

(
∂2

∂x21
+

∂2

∂x22
+

∂2

∂x23

)
+ V (~r)

]
Ψ(~r) = EΨ(~r) (5)

is solved by the ansatz Ψ(~r) = ψ1(x1)ψ2(x2)ψ3(x3) if the ψi fulfill the one-dimensional
Schrödinger equation

− ~2

2m
ψ

′′

i (xi) = [Ei − V (xi)]ψi(xi) (6)

with eigenvalues
E = E1 + E2 + E3 . (7)

b) (6 pts) Consider now a particle moving in a three-dimensional box

V (xi) =

{
0 , 0 ≤ xi ≤ Li

∞ , else.
(8)

Determine the eigenfunctions and eigenvalues of (5) using the one-dimensional solution.

(Note: the solutions depend on three quantum numbers n1, n2, n3; ni = 1, 2, 3, · · · .)
c) (4 pts) Calculate the the degeneracy of states with total quantum number n2 =

∑3
i=1 n

2
i = 3

and n2 = 6.

4. Commutators (16 points)

Linear operators acting on the Hilbert space usually do not commute and

[Â, B̂] = ÂB̂ − B̂Â (9)

is, in general, different from zero.

We want to summarize and proof some useful relations here.

a) (4 pts) Show that for operators Â, B̂, Ĉ and a complex number α

[αÂ, B̂] = α[Â, B̂], [Â+ B̂, Ĉ] = [Â, Ĉ] + [B̂, Ĉ]

[ÂB̂, Ĉ] = Â[B̂, Ĉ] + [Â, Ĉ]B̂. (10)

b) (6 pts) If Â commutes with [Â, B̂], i.e., [Â, [Â, B̂]] = 0, then [Â2, B̂] = Â[Â, B̂]+[Â, B̂]Â can be
simplified to [Â2, B̂] = 2Â[Â, B̂]. Show by induction that for a polynomial p(Â) the following
relation holds

[p(Â), B̂] = p′(Â)[Â, B̂] if [Â, [Â, B̂]] = 0 . (11)

Here p′(x) = dp
dx is the derivative of p(x).

c) (6 pts) Considering the polynomial in b) as part of a series in Â we can also use this commutator
relation for differentiable functions f(Â) instead of p(Â) (assuming convergence). Proof that

eÂB̂e−Â = B̂ + [Â, B̂] if [Â, [Â, B̂]] = 0. (12)
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